Key Findings of 2011 ATRS Global Airport Performance Benchmarking project

Prof. Tae Oum, Prof. Chunyan Yu, Dr. Yapyin Choo

The Air Transport Research Society (ATRS) www.atrsworld.org

The ATRS Global Airport Benchmarking Task Force

Asia Pacific: P. Forsyth, Yeong-Heok Lee, Yuichiro Yoshida, Japhet Law, Shinya Hanaoka Europe: Nicole Adler, Jaap de Wit, Hans-Martin Niemeier, Eric Pels North America: Tae Oum, Bijan Vasigh, Jia Yan, Chunyan Yu Middle East: Paul Hooper

Outline

- Objective of the ATRS Benchmarking Study
- Airports Included and ATRS Database
- Some Characteristics of Sample Airports
- ➢ Methodology
- ≻ Key Results on Efficiency and Costs
- User Charge Comparisons

Objective of the Benchmarking Study

- □ To provide a comprehensive, unbiased comparison of airport performance focusing on
 - Productivity and Operating/Mgt Efficiency
 - Unit Cost Competitiveness
 - Comparison of Airport Charge Levels

□Our study **does not treat service quality differentials** across airports **for data reasons**

Airports Included in the study

150 19	156 airports 19 airport groups		
7	airports (All New)		
9	airports		
5	airport groups		
32	airports (5 New)		
14	airport groups		
45	airports (2 New)		
63	airports		
	63 45 14 32 5 9 7 7 156 19		

The ATRS Database

- □ The ATRS Database contains time-series information (from year 2001) including **financial data**, **traffic and capacity data** of the major airports and airport authorities (groups) in the following geographic regions:
 - Asia Pacific
 - Europe
 - North America and
 - Latin America (non-financial data only)
- □ The data includes
 - Characteristics of Airport (capacity, type of ownership etc)
 - Traffic (ATM, passengers, freight, etc.)
 - Aeronautical Revenue
 - Non-Aeronautical Revenue including concession, car parking
 - Operating Statistics and Operating Expenses
 - Balance Sheet

□ 1.5 year lag in data (due to airport annual reporting lag)

Data Sources: FY 2001-2009

- □ Airport's Financial Statements, Annual Reports and direct data requests;
- □ US FAA, DOT statistics;
- Association of European Airlines (AEA) Statistics
- □ ICAO Digest of Statistics:
 - annual and monthly traffic data
 - annual financial data not for all airports
- □ ACI; IATA
 - annual traffic statistics; capacity information; airport charges
 - general information surveys (Asia Pacific and Europe) occasional and not complete
- □ IMF and World Bank various price indices including GDP deflators for service sectors and PPP
- US Census Bureau, Statistics Canada regionally based Cost of Living Index

Outline

 Objective of the ATRS Benchmarking Study
 Airports Included and ATRS Database
 Some Characteristics of Sample Airports

- ➢ Methodology
- ➢ Key Results on Efficiency and Costs
- ➢ User Charge Comparisons

Passenger Traffic - Top 10 Airports ('000 passengers) :2009, 2007, 2005

© Air Transport Research Society (ATRS)

Aircraft Movements, 2009 ('000 ATM)

Air Cargo - Top 10 Airports ('000 metric tons) 2009, 2007, 2005

% Non-Aero Revenue, 2009

Outline

- Objective of the ATRS Benchmarking Study
- Airports Included and ATRS Database
- Some Characteristics of Sample Airports

>Methodology

- ➢ Key Results on Efficiency and Costs
- ➢ User Charge Comparisons

Methodology: Efficiency Measurement

- Variable Factor Productivity (VFP) Index
 - Total Factor Productivity (TFP) Impossible because of capital input cost accounting problem
- VFP is essentially the ratio of **total (aggregate) output index** divided by **total (aggregate) variable input index**, namely labor and soft cost input (total non-labor variable inputs).
- In fact, we compute VFP using the **multilateral index** procedure proposed by Caves, Christensen and Diewert (1982).

Airport Productivity Index

Outputs	Inputs		
 Aircraft movement Passengers Non-aeronautical revenues (Cargo tonnes handled) 	 Labour Other non-labor, non-capital (soft cost) inputs – i.e., catch all expenses deflated by price index 		

Potential Reasons for the Measured Productivity (gross VFP) Differentials

Factors Beyond Managerial Control:

- Airport size (Scale of aggregate output)
- Average aircraft size using the airport
- Share of international traffic
- Share of air cargo traffic
- Extent of capacity shortage congestion delay
- Connecting/transfer ratio

We compute 'residual (Net) variable factor productivity (RVFP) measures after removing effects of these Factors

Outline

- Objective of the ATRS Benchmarking Study
- Airports Included and ATRS Database
- Some Characteristics of Sample Airports
- ➢ Methodology
- **Key Results on Efficiency and Costs**
- ➢ User Charge Comparisons

Gross VFP Vs Residual (Net) VFP(after removing factors beyond managerial control) : Oceania (SYD=1.0)

After removing factors beyond managerial control such as capacity constraint, average aircraft size, % international traffic, etc, CHC's relative performance in term of Net VFP improved significantly.

Residual (Net) Variable Factor Productivity: Asia (HKG=1.0)

Residual (Net) Variable Factor Productivity: Europe (CPH=1.0)

Residual (Net) Variable Factor Productivity: N. America – Passengers > 15 million (YVR=1.0)

Residual (Net) Variable Factor Productivity: N. America – Passengers < 15 million (YVR=1.0)

Top Efficiency Performers (2011)

(based on Net VFP index=operating/management efficiency)

Asia Pacific:

- Oceania Airports: Sydney, Christchurch
- Asian Airports: Hong Kong, Singapore

Europe:

- Large Airports (> 15 million pax): Copenhagen and Oslo
- Small/Medium Airports (< 15 millions Pax): Geneva, Reykjavik-Keflavik

North America (Canada/US):

- Large Airports (> 15 million pax): Atlanta, Minneapolis/St Paul
- Small/Medium Airports (< 15 millions Pax): Raleigh-Durham, Reno

Past Airport Efficiency Excellence Top Performers, 2006-2010

	2006	2007	2008	2009	2010
North America	Hartsfield-Jackson Atlanta International Airport	Hartsfield-Jackson Atlanta International Airport	Hartsfield-Jackson Atlanta International Airport	Hartsfield-Jackson Atlanta International Airport	Large Airport Category Hartsfield-Jackson Atlanta International Airport Small/Medium Airport Category Raleigh-Durham International Airport
Europe	Copenhagen Kastrup International Airport	Oslo International Airport	Copenhagen Kastrup International Airport	Copenhagen Kastrup International Airport	Large Airport Category Oslo International Airport Small/Medium Airport Category Genève Aéroport
Asia- Pacific	Incheon International Airport	Hong Kong International Airport	Hong Kong International Airport	Hong Kong International Airport	Large Airport Category Hong Kong International Airport Small/Medium Airport Category Seoul Gimpo International Airport

Cost Competitiveness = Net VFP and Input Price Effect N. America – Passengers < 15 million (YVR=0.0)

Cost Competitiveness = Net VFP and Input Prices Effect **Europe** (**CPH=0.0**) - *the higher the better*

Cost Competitiveness: = Net VFP and Input Price Effect Asia (HKG=0.0) – *the higher the better*

Cost Competitiveness = Net VFP and Input Price Effect **Oceania (SYD=0.0)** - *the higher the better*

Cost Competitiveness = Net VFP and Input Price Effect N. America – Passengers > 15 million (YVR=0.0)

Top Unit Cost Competitiveness Performers

Asia-Pacific:

- Oceania: Christchurch, Sydney
- Asia: Haikou, AOT (Airport Authority of Thailand), APII (Angkasa Pura II, Indonesian Group)

Europe:

• Polish Airports, Reykjavik-Keflavik, Tallinn

N. America:

- Large Airports (> 15 million Pax): Atlanta, Charlotte, Tampa
- Small/Med Airports (< 15 million Pax): Raleigh-Durham, Reno, Nashville

Outline

- Objective of the ATRS Benchmarking Study
- Airports Included and ATRS Database
- Some Characteristics of Sample Airports
- > Methodology
- ➢ Key Results on Efficiency and Costs
- **User Charge Comparisons**

Landing Charges: Basis for computing

• Assumptions:

- (Use of signatory airlines)
- Passenger aircraft
- Peak and off-peak charges separately treated
- International flights
- Some airports have summer/winter rates these are averaged
- Assumed 2 hours aircraft parking
- Exclusion: Tax, Noise charges, lighting surcharge

Landing Charges for Boeing 767-400, 2010 (in US\$)

Asia Pacific: Landing Charge for Airbus 320, 2010 (in US\$)

Europe: Landing Charge for Airbus 320, 2010 (in US\$)

North America: Landing Charge for Airbus 320, 2010 (in US\$)

Summary – Landing/Takeoff Charges (Airbus 320)

□ Asia-Pacific Results:

- Highest charges: Haneda, Kansai, Narita
- Lowest charges: Kuala Lumpur, Bangkok, Cairns

European Results:

- Highest charges: London Gatwick peak, Dusseldorf, Dublin
- Lowest charges: **Riga(Latvia)**, Stockholm, Malta

North American Results:

- Highest charges: Toronto, LaGuardia, St. Louis
- Lowest charges: Charlotte, Nashville, Raleigh-Durham,

Combined Landing and Passenger Charges

Given that it is difficult to separate landing and passenger charges for some airports, the *combined landing and passenger charge* may reflect a better picture.

Asia Pacific: Combined Landing and Passenger Charge for Airbus 320, 2010 (in US\$)

Europe: Combined Landing and Passenger Charge for Airbus 320, 2010 (in US\$)

N. America: data allows us to compute Cost per Enplaned Pax for Airlines (CPE)

• CPE = sum of landing fees, terminal arrival fee, rents and utilities, terminal apron charges/tiedowns, and passengers other aeronautical payments to airports divided by enplaned passengers

North America: Total Charges per Enplaned Passenger, 2009 (in US\$)

Summary – Cost per Enplaned Passenger (CPE)

North American Results:

- Highest charges: Toronto, New York JFK, Newark
- Lowest charges: Charlotte, Atlanta, Salt Lake City

Summary – Combined Landing and Pax Charges (N.Am Cost per Enplaned Pax)

Asia-Pacific Results:

- Highest charges: Kansai, Nagoya, Narita
- Lowest charges: Kuala Lumpur Low Cost Carrier Terminal, Chennai (India), Mumbai (India)

European Results:

- Highest charges: London Heathrow, Prague (Czech Rep.), Paris Orly
- Lowest charges: Brussels South Charleroi, Riga(Latvia), Manchester (Off-Peak)

North American Results:

- Highest charges: Toronto, New York JFK, Newark
- Lowest charges: Charlotte, Atlanta, Salt Lake City

ATRS Airport Benchmarking Report

The ATRS Global Airport

Performance Benchmarking Report : 3 volumes, over 500 pages of valuable data and analysis
Can be purchased by visiting www.atrsworld.org
Report sale finances our annual benchmarking research project

Thank You

2012 ATRS World Conference (Taiwan in late June, 2012)

